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Abstract

One of the authors has studied the properties of a family of Riesz bases obtained by
perturbing the Haar function using B-splines. Although these bases cannot be obtained
by multiresolution analyses, they have other interesting properties. The present paper
discusses how a discrete signal {a,; 0 < r < N - 1} can be studied by consideringN--1

a suitable function of the form f(t) := E,= 0 arfr(t), so that the existing theory for
functions defined over a continuous domain can be applied.

1 Introduction

In what follows Z will denote the integers and IR the real numbers; t and x will always
denote real variables. The support of a function f will be denoted by supp (f), its
quadratic norm by If 11 and if f E L(IR) its Fourier transform is defined by

f(x) J e-tx'f(t) dt.

In [3] we found a family of affine wavelet Riesz bases of L2 (IR), of bounded support and
arbitrary degrees of smoothness, obtained by smoothing the discontinuities of the Haar
function using B-splines. Although these bases are not orthogonal they are symmetric,
a feature that is lacking in orthogonal wavelets. Our bases can be constructed so that
the difference between the frame bounds (which are given explicitly) can be made as
small as desired. In general, orthogonal wavelets are represented by infinite series, and
for computational purposes values are generated over a discrete set using the cascade
algorithm [2, 5]. Our bases, on the other hand, are given in closed form. We now briefly
describe how these wavelets are defined and introduce additional notation and make
assumptions that will be used in the subsequent discussion.

Let Nm(t) denote the B-spline of order m (m > 2) ([1], Chapter 4), X[O,mi-](t) the
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characteristic function of [0, m - 1]),

m-2 m-2
g(t) := X[O,m-,] (t) E Wn,(t -k), gi(t) :g(t- m+l1), h(t) :=(1/2) E Nm (t -k),

k=O k=O

and q(t) := gl(t) - h(t). For 0 < J < 1/2, let a = -a 2 = -a3 = a4 = 2(m -
0/1 = 2(m -1), 02 = 2(m - 1)(1 + J)/J, /33 =- -- 34 (m -- 1)16,

p{}(t) (-1) -lq(ait+f3i),i = 1,2,3,4, p{5 }(t) := -(X[1/2_5,l/2)(t)-X[1/2,1/2+5)(t)),
6

p{6}(t) := X[o,1/ 2 )(t) - X[1/ 2 ,1 )(t), and V)(t) := Ep{}l(t).

i=1

We will call 0 the perturbed Haar wavelet. In [3] we proved that supp (b) C [-6, 1 + 6],
0 E Cm- 2 (IR), and that if bj,k(t) := 2j/ 2

0 (2it - k), then {Ij,k;j, k E Z} is a Riesz
basis, and we provided explicit upper and lower frame bounds. Moreover, in [7] we
showed that given a function y, the wavelet coefficients (P, 0y,k) can be computed in
'O(N) steps (where N is the sample size), just as in the orthogonal case.

In this paper we will discuss the application of the perturbed Haar wavelet to the
study of discrete signals. Let us first look at the orthogonal case for comparison.

Let p be an orthogonal wavelet associated with a multiresolution analysis {Vj; j E Z}
and a scaling function k, with the caveat that the definition of multiresolution analysis
that we are adopting is that of [1] and [4], and therefore Vj c Vj+I,j E Z, whether
other authors, like [2] and [5] assume that Vj+1 C Vj. If a := {a,; 0 < r < N = 1} is an
arbitrary sequence of real or complex numbers, then this discrete signal is transformed
into a continuous one by considering the function vit) := ON__QI arq(t - r).

The study of the signal v(t) has two stages: the analysis stage consists in computing
the wavelet coefficients,whereas the synthesis stage consists in reconstructing the signal
from the wavelet coefficients. If Wj denotes the closure of the linear span of the functions
[•j,k, j E Z, then the Wj are mutually orthogonal and VO = Gj<oWj. Since u E Vo, it
turns out that the wavelet coefficients (V, Aj,k) vanish for j > 0. Moreover, since v(t)
has compact support, for each j < 0 there is only a finite number of nonzero wavelet
coefficients.

With the perturbed Haar wavelet we face an additional problem: the spaces Wj are no
longer orthogonal, and we can therefore no longer assume that all the wavelet coefficients
corresponding to positive values of j must vanish. Moreover, we may not even have a
scaling function: in [8] we showed that if 6 = 2 ý, where f is a negative integer, then the
perturbed Haar wavelet 0 that corresponds to this value of 6 cannot be generated by a
multiresolution analysis.

To overcome these difficulties, we proceed as follows. Let n E Z be such that 2' >
4(m- 1), b{1}(t) := X[o,2(m. 1))(t)q(t), b{2}(t) := q(4(m- 1) -t), b(t) := b{1}(t) +b{2}(t),

f,(t) := a~b(2-t - 4(m - 1)r), and f(t) := -_I0 fr(t). By a direct application of [3]
Lemma 6 we obtain the following

Lemma 1 The function b(t) has the following properties:
(a) supp(b) C [0,4(m - 1)], (b) b E Cm• 2 (J), (c) b(2(m - 1)) = 1,
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(d) d'b(O)= b(2(m-1))= d 'b( 4 (rn-1)) =0, 1<k<rn-2,

(e) The total variation of b does not exceed 4(m - 1), (f) Ib(t)I < 1.

From the preceding lemma we conclude that supp(f) C [0, 1], and that the func-

tions f, have disjoint supports. This implies that IIff12 = IIbII2 IiaiI2 22-, where Iiail2

,__Ji tar 2. We will also use the f, norm: Iiall1 := -,_Ilari. Note, moreover, that

f E Cm- 2(lt), and that f(2 1-'(rn - 1)(2r + 1)) = fr(21-'(m - 1)(2r + 1)) = arb(2(m -
1)) = ar.

In theory, given all its wavelet coefficients, the function f can be reconstructed using

the frame algorithm or other, even faster, algorithms [5]. However, since there may be
an infinite number of nonzero wavelet coefficients, the application of such algorithms

may not always be practical. We will adopt an approximation approach. If A = A(6, m),
and B = B(3, m) are respectively the lower and upper frame bounds of the Riesz basis
generated by 0, hj,k := (f, Oj,k), and Lf := -j k Czhj,kVj,k, then from the error
estimates for the frame algorithm we know that IILf - f 11 - ((B - A)/(B + A))IIf 1I.
Since, as remarked above, we can make A and B as close to 1 as we want by making 3

sufficiently small, we conclude that for every e > 0 there is a 6o such that if 0 < 3 < 6o,
then IL f - f I < ellf 1I. To approximate f using the wavelet coefficients it will therefore
suffice to approximate L f by an operator of the form

i2

E f= L Z h,kV~j,k.-
"=jl kEZ

Observe that since f has bounded support, E f reduces to a finite sum
Our objective will be accomplished by showing that there is a constant K such that

kzhj,k~j,k -- Kil~a 2-I/,

But first we need to prove five lemmas, of some independent interest. We begin with

Lemma 2 Let {al,; k E Z} and {bh,; k E Z} be increasing sequences such that ak <

bk-1 < ak+1, k E Z. Assume that fk E L2 (I?,) and that supp(fk) _ [ak,bk], and let

f := ZkEZfk. Then <f12 _ 2-k1z 1f1 2

Proof: If r < k - 1 then br < bk-2 < ak, whereas if r > k + 1 then ar >_ ak+2 > bk.

This implies that if r 5 k - 1, k then fr (t) = 0 on [ak, bk], and we readily see that

Sbk

If112 <_ 2 1 fk(t)12 = 2 E hfk(t)112 . o
kEZ Ik' kEZ

Lemma 3 Let u E L2 (B?) be a function with support in an interval [a, b] with b - a < 1.

If j < 0, then
1 1(U jk)1 < 3l III1 2j.
kEZ

Proof. Let j < 0 be arbitrary but fixed, and define I(k) := supp (0j,k) n [a, b]. Then

I(k) _ [2-1(k - 3),2-i(k + 3 + 1)] nl [a, b]. If I(k) = 0 then, either 2-i(k + 3 + 1) < a,
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or 2-j(k J 6) > b. This implies that if I(k) = 0, then k C (2ja - 5 - 1, 2Jb + 6). Since
the length of this interval is less than 3, we conclude that there are at most three values
of k for which I(k) ý4 0. In other words, there are at most three values of k for which
hj,k # 0. Since 10(t)I < 1, for any such k we have:

2

1(u, Oj,k)1
2 = 2ij u(t)k(2kt - k) dt < 2 ) I[u(t)12 dt 1(k(2kt - k)12 dt

K (b - a)2 J )[u(t)1
2 dt<_2i1u112.

4Ik)

Lemma 4 Let a,c3, - o C IR?, with a, -y 0 0, and define c(t) := q(at + fi), d(t)
q(7t +a), and

K = 2 {[25/64±+ (25/192)2/3] (,M _ i)4 + (mr 1 )2 /1024}

If j >0 andi=5,6, then
(a) S I(d'cj,k}I2 •a ( 4 .'ia-2 + 1/3)22-; (b) 2 (d-P-J+)12• (2V/- 1/2)22-j.

kEZ kEZ

Proof: (a) From [3] p. 3367 (bearing in mind the slightly different definition of the
Fourier transform), we have

"(x) = (i/x)e-(m-1)xi/2 [e-(m-1)xi/2 - ((2/x)sinx/2)m-1 I

From [1] p. 56 (3.2.16),

Nm (X) e-(1/2)x [(2/x) sin x/2]m . (1.1)

Let
s(x) := [(2/x) sinx/2]m-1

Then
I(x) W e-(m-1)xi =) (i/x)[e-2(m-.)xi -

Since "hI)= m- -kxig1- e-(m-1)xi
h(X) - e2 1 e (X) = (1/2)1- e-xi g.(x),

k=O

a straightforward computation yields

h(x) = -i/(2x)[e-(1/2)(m-1)xi - e-( 3 / 2)(m-1)xi]s(x),

whence

"ý(x) ile-(m-1)Xi[cos(m - 1)x - s(x) cos _(m - 1)xx2
+i(2s(x) sin 1 (m - 1)x - sin(m - 1)•)]. (1.2)

This implies that
I ýX12 _< 8x -2, X 5 0. (1.3)
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On the other hand,

ý(x) = ix-le-(m-1)Xi [(v1 + v2) + i(va + v 4)],

where

v -cos(m - 1)x - cos(1/2)(m - 1)x, v2 := [1 - s(x)] cos(1/2)(m - 1)x,

V3 s(x) [2sin(1/2)(m - 1)x - sin(m - 1)x], v4 := [s(x) - 1] sin(m - 1)x.

A McLaurin expansion shows that lvii < (5/8)(m - 1)2x. Since 1 - u'-1 = (1 -

U) --k=0 uk and Isinu I< I u1, we infer that

1 - s(x)l < (m - 1)Q1 - (2/x) sin x/21 = (m - 1)(2/x)IJ/2 - sin x/21.

Since Iu - sinul I Iu13/6, we conclude that 1 - s(x)] 1< (m - 1)X2/48. Thus,

[v2 (x)I <_ (M - 1)X2/48, and 1V4 (X)l I (m - 1)x'/48.

Another McLaurin expansion yields Iv31 _< (5/24)(m - 1)3 1x1 3 . Clearly jv3j < 3; thus

IV3 1 = IV3 1
2

/
3 1V3 11/ 3 < (25/192)1/ 3 (ma - 1)2X2. Since
g Xx)12 = x- 2 [(vI + v2)2 + (v3 + v4)] < 2-[v 2 + V +2v + ,

we deduce that

I '(x)12 < Kx 2 . (1.4)

From Plancherel's identity we have:

(d, cj,k) = 2j/2 JIR d(t)c(2it - k) dt = 2j/ 2/(27r) Jla, ekic(x)d(2jx) dx

= 2/2 /(27r) e'x' Z Q(x + 27tr)d(2j(x + 21rr)) dx.

-j2 f kEZ

This means that {2- / 2 (d, cj,k); k E Z} is the sequence of Fourier coefficients of the
function ZkEZ "ý(x + 21rr)d(2J (x + 27rr)). Thus, applying Bessel's identity and then the
Cauchy-Schwarz inequality twice (once for sums and once for integrals), we have:

27r2- • l(d, ci,k)I2  / [ [ (x + 2rr)d(2j(x + 27rr)) dx
kEZ J rEZ

<j27r[1jý(x)d(2jx)I + j(x - 2r)d(2j(x -27r))I + 1: F(x ±2rrr)d(23 (x + 2rr)) 2 dx

< E ( 2ir ~x)~~x~l2 dx) 12 + J21T  
- 2r#0, 3 (x- 2r)1 x

r$O,--1
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Since '(x) = a-le(/l)xi(a-lx), (1.3) implies that

ai(x + 2wr)12 •_ 81x + 27rr1- 2 , x = 27rr, (1.5)

whereas from (1.4) we see that

Ia(x + 27rr)12 < K -4 Ix + 27rr12 . (1.6)

Since d(x) = y-,e(r/'Y)tI4(y-x), (1.3) also implies that

Id(2j(x + 27rr)) 2 < 4-j+ 2x + 2r12, x : 27rr. (1.7)

Since S, is obtained by integrating the product of the left-side members of (1.6) and
(1.7) (with r = 0) over an interval of length 27r, we readily see that

S, < 167wKa- 44-j. (1.8)

A similar argument yields
S2 _< 167rK a-44-j. (1.9)

From Minkowski's inequality

S3 j f2,, I-(x + 2wr)12 E d(2j(x + 21r)) 2 dx.
r0O,-1 r#O,-1

If x E [0, 27] and r > 1 then from (1.5) we have:

SIF(x + 27rr)12 < 21r-2 E r-2 = 1/3,
r>1 r>1

whereas (1.7) implies that

Sd'(2 3(x + 2wrr)) 2 < 24-i 7r-2 5r- 2 = 4-j/3.
r_>1 >l

Similarly,

SI-(x + 2wr)l12 < 2w- 5r2- = 1/3,
r_-2 r>1

and

S d(2j(x+27rr)) <24-i7r-2 Er2=4-j/3,

r_-2 r>1

whence we conclude that S 3 _• (47r/9)4-J. Combining (1.8), (1.9) and the preceding
inequality, the assertion follows.

(b) Note that p{6} is p{5} with 6 - 1/2. Since p{5 }(x) = 2ix-le-(1/2)xi(1 - cos6x),
we see that

p{f5}-(x + 27rr)12 < 41x + 27rr]- 2 , x : 27rr. (1.10)

On the other hand, the inequality 11 -cos 6xl •_ (1/2)62X2 implies that p{5ý}(x)I 621x1;

therefore

Ip{5}(x 27rr) 2 64X + 2rr 2 . (1.11)
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We now repeat the argument employed in (a), using (1.10) instead of (1.5), (1.11) instead
of (1.6), and bearing in mind that 6 < 1/2. 0

We now find bounds for the quadratic norms of q(t) and b(t).

Lemma 5 (a) IV)II :5 1; (b) IIbII < 2(m - 1).

Proof. (a) [1] Theorem 4.3 implies that the functions Nn are nonnegative. This implies
that both g and h are nonnegative. In the proof of [3] Lemma 6(f) we show that

Jg(t)dt = J h(t)dt = (m - 1)/2,

whence

' Iq(t) dt < m -1.

Moreover, [q(t)I < 1 ([3] Lemma 6(h)). Thus,

J Iq(t)12 dt <_ R Iq(t)I dt < rn -.

Therefore,

fiR IP{1)(t)12 dt (6/2(m- 1)) JR Iq(t)12 dt <6/2, i= 1,2,3,4.

This implies that

JR IV (t)12 dt < 46/2 + Ip{6} (t)- P{5 }(t)12 dt = 26 + (1 - 26) 1.

(b)

iJ Ib(t)12 dt < JR Ib(t)Idt = 2 JR Iq(t)Idt < 2(m -1). 0

Theorem 1
(a) Ifj _ 0,

j(f,Vj,k)?Pj,k < 2V/-(m- 1)IIall 2 (j-)/2.
kEZ t1

(b) Let K be defined as in Lemma 4. If j > 0,

Eu, 4'j,k)Oj,k • 8 [v2 (K21 '- + 1/3) + N2+ 1/3] IlaIlI 2 -/2.
kEZ

Proof: Assume first that j < 0. Applying Lemma 2, Lemma 3, and Lemma 5, we have:
2

Z(f, Oj,k) j,k < 2 E II(f, Vj,k)V/j,k112 = 2IIV4II2 E I(f, Vj,k) 12

kEZ kEZ kEZ

<_ 2 E I(f,"PJ,k)12 < 611f112 2' < 611b112Ila112 2i - -< 24(m - 1)2IlaII222i',
kcZ
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Assume now that j > 0. Setting bP'l (t) := arb{i}(2't - 4(m - 1)r), we see that f•(t) =

br 1}(t) + b 2 (t). Thus,

2 6 N-1

kEZ i=1 t=1 r=O kEZ

Applying Lemma 2 and Lemma 5 as above, we see that

2

(b,"} pj"•2 1 (bý}, pjý 12.,k - Ojkk/1k

kEZ kEZ

Since the Fourier transforms of q(t) and X[o,2(m-1))q(t) are identical. and the functions

br"} are of the form ar q(at + /0) or ar X[o,2(m-1))(at + ,3)q(ct +, 3) with oja = 2n, from
Lemma 4 we have:

S(bl'},5)ý •< 21a, 1
2 (2xK2-n±1/3) 2-j, f= 1,2,3,4,

kEZ

and
(b1J~p~t1 1 < jar 12 2 (v/2 + 1/)22-3, f 56

kCZ

whence the assertion readily follows. 0
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